머신러닝 & AI 개발자 Tip & 강좌 게시판

Data Scientist와 개발자를 위한 머신러닝, AI 등 개발 Tip과 강좌 게시판 입니다. 일반적인 머신러닝은 물론 딥러닝(Tensorflow, Keras, PyTorch 등), 인공지능 관련 업무를 진행하면서 얻은 Tip이나 강좌, 새로운 소식을 적어 주시면 다른 개발자 분들에게 큰 도움이 됩니다.

안녕하세요. SQLER의 코난 김대우입니다. 

이번 강좌에서는, Python 머신러닝 강좌 - 4. Pandas DataFrame을 진행토록 하겠습니다.

예제 노트북 파일 : 4. Pandas DataFrame 예제 노트북

 

SQLER에서 진행되는 전체 Python / 머신러닝 강좌 목록

 

코드를 실행하기 위해서는, vscode에서 새로운 파일을 만들고 강좌 내용을 단계별로 copy&paste해서 실행하시면 됩니다. 또는, Jupyter notebook을 실행하고 단계별로 실행하셔도 됩니다.

예를 들어, 4_more_pandas.ipynb를 생성하고 vscode에서 실행하면, Jupyter notebook이 실행됩니다.(vscode에서 실행도 가능하며, 웹브라우저에서도 실행 가능합니다.)

또는, github 리포지토리를 clone 하신 후, vscode나 Jupyter notebook에서, 위의 노트북 파일을 열면 됩니다. 
 

상세한 환경 구성이 필요 하시다면, 개발자 커뮤니티 SQLER.com - Python 초급 강좌 목차 - 1. Python 개발 환경 구성 문서를 참조해 WSL, vscode, conda, jupyter notebook 설정을 모두 먼저 완료 하시길 권장해 드립니다.

 

 

Python 머신러닝 강좌 - 4. Pandas DataFrame

지난 시간에는 간략히 pandas의 Series와 DataFrame에 대해 살펴 보았습니다. 이번 시간에는 훨씬 많이 사용하시게 될 pandas의 DataFrame에 대해 조금 더 깊게 살펴보도록 하겠습니다.

 

DataFrame의 데이터 조사

DataFrame의 내용을 빠르게 조사 할 경우에 이 내용이 유용합니다. pandas 라이브러리를 import 하고, 이어서 공항에 대한 정보를 포함하는 DataFrame을 생성해 보겠습니다.

import pandas as pd

airports = pd.DataFrame([
                        ['Seatte-Tacoma', 'Seattle', 'USA'],
                        ['Dulles', 'Washington', 'USA'],
                        ['Heathrow', 'London', 'United Kingdom'],
                        ['Schiphol', 'Amsterdam', 'Netherlands'],
                        ['Changi', 'Singapore', 'Singapore'],
                        ['Pearson', 'Toronto', 'Canada'],
                        ['Narita', 'Tokyo', 'Japan']
                        ],
                        columns = ['Name', 'City', 'Country']
                        )

airports

실행하면 결과는 아래와 같습니다.

 

more_dataframe.png

 

첫 n개의 행(row) 리턴

수천 개의 많은 row들 있는 경우, 처음 몇 행만 보고 싶을 수 있습니다.

  • head(n)는 상위 n 행을 리턴합니다.
airports.head(3)

 

마지막 n개의 행 리턴

DataFrame의 마지막 행을 보는 것은 모든 데이터가 올바르게 로드 되었는지 체크하는 좋은 방법입니다.

  • tail(n)은 마지막 n 행을 리턴합니다.
airports.tail(3)

 

DataFrame의 row 및 column 수 확인

DataFrame에 얼마나 많은 데이터가 있는지 체크할때 사용합니다.

  • shape는 row과 column의 수를 리턴합니다.
airports.shape

=== 실행결과 ===

(7, 3)

DataFrame 에 대한 자세한 정보 얻기

  • info()는 DataFrame에 대한 자세한 정보를 리턴합니다.

리턴되는 정보

  • row 수 및 index 값 범위
  • column 수
  • 각 column에 대해: column 이름, null이 아닌 값의 개수, datatype 정보가 리턴됩니다.
airports.info()

=== 실행결과 ===
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7 entries, 0 to 6
Data columns (total 3 columns):
 #   Column   Non-Null Count  Dtype 
---  ------   --------------  ----- 
 0   Name     7 non-null      object
 1   City     7 non-null      object
 2   Country  7 non-null      object
dtypes: object(3)
memory usage: 296.0+ bytes

 

이렇게 간단히, DataFrame에서 데이터를 조회하는 부분을 살펴 보았습니다. 데이터를 로드 후 shape를 체크하거나, 빠르게 살펴볼때 유용한 명령들이니 잘 봐두시면 이후에도 많은 도움 되실거에요. 

 

참고자료

개발자 커뮤니티 SQLER.com - Python 무료 강좌 - 기초, 중급, 머신러닝

c9-python-getting-started/even-more-python-for-beginners-data-tools/04 - Examining Pandas DataFrame contents at master · CloudBreadPaPa/c9-python-getting-started (github.com)

No. Subject Author Date Views
26 Form Recognizer로 문서에서 표 데이터 추출 file 코난(김대우) 2021.01.21 150
25 MLaaS - (1) 12가지의 머신러닝을 먼저 도입한 기업들의 고민 file 코난(김대우) 2021.01.15 296
24 Python 머신러닝 강좌 - 15. Matplotlib으로 데이터 시각화(visualization) file 코난(김대우) 2021.01.09 151
23 Python 머신러닝 강좌 - 14. NumPy와 Pandas 코난(김대우) 2021.01.09 130
22 Python 머신러닝 강좌 - 13. 모델의 정확도 평가(accuracy evaluating) 코난(김대우) 2021.01.09 97
21 Python 머신러닝 강좌 - 12. 머신러닝 모델 테스트 코난(김대우) 2021.01.09 81
20 Python 머신러닝 강좌 - 11. scikit-learn으로 선형회기(linear regression) 모델 머신러닝 트레이닝 수행 코난(김대우) 2021.01.08 93
19 Python 머신러닝 강좌 - 10. 머신러닝을 위해 scikit-learn으로 트레이닝 데이터와 테스트 데이터 분할 코난(김대우) 2021.01.08 48
18 Python 머신러닝 강좌 - 9. 중복데이터와 결측값(missing value) 처리 코난(김대우) 2021.01.08 38
17 Python 머신러닝 강좌 - 8. Pandas DataFrame 컬럼(column) 분할(split)과 삭제(remove) 코난(김대우) 2021.01.08 48
16 Python 머신러닝 강좌 - 7. Pandas DataFrame으로 CSV 파일 읽고 쓰기 코난(김대우) 2021.01.08 27
15 Python 머신러닝 강좌 - 6. CSV 파일과 주피터 노트북 file 코난(김대우) 2021.01.08 44
14 Python 머신러닝 강좌 - 5. Pandas DataFrame에 질의(Query) 코난(김대우) 2021.01.07 38
» Python 머신러닝 강좌 - 4. Pandas DataFrame file 코난(김대우) 2021.01.07 34
12 Python 머신러닝 강좌 - 3. Pandas 소개 file 코난(김대우) 2021.01.07 65
11 Python 머신러닝 강좌 - 2. Anaconda와 Conda 구성 file 코난(김대우) 2021.01.06 71
10 Jupyter notebook 단축키 등의 cheat sheet file 코난(김대우) 2021.01.06 61
9 Python 머신러닝 강좌 - 1. 주피터 노트북(Jupyter Notebook) 구성 file 코난(김대우) 2021.01.06 208
8 2021년 머신러닝과 인공지능(AI) 트렌드 - MLaaS (서비스로의 머신러닝) file 코난(김대우) 2020.12.29 189
7 머신러닝을 시작하는 개발자를 위한 - (4) 2021년의 ML Trend - MLaaS와 MLOps(Machine Learning + DevOps) 코난(김대우) 2020.12.28 158





XE Login